#AT1823. A - Repression
A - Repression
A - Repression
Score : $100$ points
Problem Statement
There are three cards on the desk, each with a positive integer written on it. The integers on the cards are $A$, $B$, and $C$.
You have chosen two cards and picked them up.
Find the maximum possible sum of the integers written on the picked cards.
Constraints
- $1 \leq A,B,C \leq 100$
- All values in input are integers.
Input
Input is given from Standard Input in the following format:
Output
Print the answer as an integer.
3 4 5
9
If you pick up two cards with $4$ and $5$, the sum of the integers will be $4+5=9$.
There is no way to pick up cards with a greater sum, so we should print $9$.
6 6 6
12
Whichever two cards you choose, the sum of the integers will be $12$.
99 99 98
198