#AT1813. C - POW

C - POW

C - POW

Score : $300$ points

Problem Statement

For a base number $X$, the product of multiplying it $Y$ times is called $X$ to the $Y$-th power and represented as $\text{pow}(X, Y)$. For example, we have $\text{pow}(2,3)=2\times 2\times 2=8$.

Given three integers $A$, $B$, and $C$, compare $\text{pow}(A,C)$ and $\text{pow}(B,C)$ to determine which is greater.

Constraints

  • $-10^9 \leq A,B \leq 10^9$
  • $1 \leq C \leq 10^9$
  • All values in input are integers.

Input

Input is given from Standard Input in the following format:

AA BB CC

Output

If $\text{pow}(A,C)< \text{pow}(B,C)$, print <; if $\text{pow}(A,C)>\text{pow}(B,C)$, print >; if $\text{pow}(A,C)=\text{pow}(B,C)$, print =.


3 2 4
&gt;

We have $\text{pow}(3,4)=81$ and $\text{pow}(2,4)=16$.


-7 7 2
=

We have $\text{pow}(-7,2)=49$ and $\text{pow}(7,2)=49$.


-8 6 3
&lt;

We have $\text{pow}(-8,3)=-512$ and $\text{pow}(6,3)=216$.