#AT1776. B - Intersection

B - Intersection

B - Intersection

Score : $200$ points

Problem Statement

You are given sequences of length $N$ each: $A = (A_1, A_2, A_3, \dots, A_N)$ and $B = (B_1, B_2, B_3, \dots, B_N)$.
Find the number of integers $x$ satisfying the following condition:

  • $A_i \le x \le B_i$ holds for every integer $i$ such that $1 \le i \le N$.

Constraints

  • $1 \le N \le 100$
  • $1 \le A_i \le B_i \le 1000$
  • All values in input are integers.

Input

Input is given from Standard Input in the following format:

NN

A1A_1 A2A_2 A3A_3 \dots ANA_N

B1B_1 B2B_2 B3B_3 \dots BNB_N

Output

Print the answer.


2
3 2
7 5
3

$x$ must satisfy both $3 \le x \le 7$ and $2 \le x \le 5$.
There are three such integers: $3$, $4$, and $5$.


3
1 5 3
10 7 3
0

There may be no integer $x$ satisfying the condition.


3
3 2 5
6 9 8
2