#AT1775. A - Square Inequality
A - Square Inequality
A - Square Inequality
Score : $100$ points
Problem Statement
You are given integers $A$, $B$, and $C$.
Determine whether $A^2 + B^2 < C^2$ holds.
Constraints
- $0 \le A \le 1000$
- $0 \le B \le 1000$
- $0 \le C \le 1000$
- $A$, $B$, and $C$ are integers.
Input
Input is given from Standard Input in the following format:
Output
If $A^2 + B^2 < C^2$ holds, print Yes
; otherwise, print No
.
2 2 4
Yes
Since $A^2 + B^2 = 2^2 + 2^2 = 8$ and $C^2 = 4^2 = 16$, we have $A^2 + B^2 < C^2$, so we should print Yes
.
10 10 10
No
Since $A^2 + B^2 = 200$ and $C^2 = 100$, $A^2 + B^2 < C^2$ does not hold.
3 4 5
No
相关
在下列比赛中: