#AT1710. B - Orthogonality
B - Orthogonality
B - Orthogonality
Score : $200$ points
Problem Statement
Given are two $N$-dimensional vectors $A = (A_1, A_2, A_3, \dots, A_N)$ and $B = (B_1, B_2, B_3, \dots, B_N)$.
Determine whether the inner product of $A$ and $B$ is $0$.
In other words, determine whether $A_1B_1 + A_2B_2 + A_3B_3 + \dots + A_NB_N = 0$.
Constraints
- $1 \le N \le 100000$
- $-100 \le A_i \le 100$
- $-100 \le B_i \le 100$
- All values in input are integers.
Input
Input is given from Standard Input in the following format:
Output
If the inner product of $A$ and $B$ is $0$, print Yes
; otherwise, print No
.
2
-3 6
4 2
Yes
The inner product of $A$ and $B$ is $(-3) \times 4 + 6 \times 2 = 0$.
2
4 5
-1 -3
No
The inner product of $A$ and $B$ is $4 \times (-1) + 5 \times (-3) = -19$.
3
1 3 5
3 -6 3
Yes
The inner product of $A$ and $B$ is $1 \times 3 + 3 \times (-6) + 5 \times 3 = 0$.