#AT1703. A - Large Digits

A - Large Digits

A - Large Digits

Score : $100$ points

Problem Statement

For an integer $n$, let $S(n)$ be the sum of digits in the decimal notation of $n$. For example, we have $S(123) = 1 + 2 + 3 = 6$.

Given two $3$-digit integers $A$ and $B$, find the greater of $S(A)$ and $S(B)$.

Constraints

  • All values in input are integers.
  • $100 \le A, B \le 999$

Input

Input is given from Standard Input in the following format:

AA BB

Output

Print the value of the greater of $S(A)$ and $S(B)$.
If these are equal, print $S(A)$.


123 234
9

We have $S(123) = 1 + 2 + 3 = 6$ and $S(234) = 2 + 3 + 4 = 9$, so we should print the greater of these: $9$.


593 953
17

100 999
27