#AT1604. D - Not Divisible

D - Not Divisible

D - Not Divisible

Score : $400$ points

Problem Statement

Given is a number sequence $A$ of length $N$.

Find the number of integers $i$ $\left(1 \leq i \leq N\right)$ with the following property:

  • For every integer $j$ $\left(1 \leq j \leq N\right)$ such that $i \neq j $, $A_j$ does not divide $A_i$.

Constraints

  • All values in input are integers.
  • $1 \leq N \leq 2 \times 10^5$
  • $1 \leq A_i \leq 10^6$

Input

Input is given from Standard Input in the following format:

NN

A1A_1 A2A_2 \cdots ANA_N

Output

Print the answer.


5
24 11 8 3 16
3

The integers with the property are $2$, $3$, and $4$.


4
5 5 5 5
0

Note that there can be multiple equal numbers.


10
33 18 45 28 8 19 89 86 2 4
5