#AT1604. D - Not Divisible
D - Not Divisible
D - Not Divisible
Score : $400$ points
Problem Statement
Given is a number sequence $A$ of length $N$.
Find the number of integers $i$ $\left(1 \leq i \leq N\right)$ with the following property:
- For every integer $j$ $\left(1 \leq j \leq N\right)$ such that $i \neq j $, $A_j$ does not divide $A_i$.
Constraints
- All values in input are integers.
- $1 \leq N \leq 2 \times 10^5$
- $1 \leq A_i \leq 10^6$
Input
Input is given from Standard Input in the following format:
Output
Print the answer.
5
24 11 8 3 16
3
The integers with the property are $2$, $3$, and $4$.
4
5 5 5 5
0
Note that there can be multiple equal numbers.
10
33 18 45 28 8 19 89 86 2 4
5