#AT1574. D - Floor Function
D - Floor Function
D - Floor Function
Score : $400$ points
Problem Statement
Given are integers $A$, $B$, and $N$.
Find the maximum possible value of $floor(Ax/B) - A × floor(x/B)$ for a non-negative integer $x$ not greater than $N$.
Here $floor(t)$ denotes the greatest integer not greater than the real number $t$.
Constraints
- $1 ≤ A ≤ 10^{6}$
- $1 ≤ B ≤ 10^{12}$
- $1 ≤ N ≤ 10^{12}$
- All values in input are integers.
Input
Input is given from Standard Input in the following format:
Output
Print the maximum possible value of $floor(Ax/B) - A × floor(x/B)$ for a non-negative integer $x$ not greater than $N$, as an integer.
5 7 4
2
When $x=3$, $floor(Ax/B)-A×floor(x/B) = floor(15/7) - 5×floor(3/7) = 2$. This is the maximum value possible.
11 10 9
9