#AT1524. B - Bingo

B - Bingo

B - Bingo

Score : $200$ points

Problem Statement

We have a bingo card with a $3\times3$ grid. The square at the $i$-th row from the top and the $j$-th column from the left contains the number $A_{i, j}$.

The MC will choose $N$ numbers, $b_1, b_2, \cdots, b_N$. If our bingo sheet contains some of those numbers, we will mark them on our sheet.

Determine whether we will have a bingo when the $N$ numbers are chosen, that is, the sheet will contain three marked numbers in a row, column, or diagonal.

Constraints

  • All values in input are integers.
  • $1 \leq A_{i, j} \leq 100$
  • $A_{i_1, j_1} \neq A_{i_2, j_2} ((i_1, j_1) \neq (i_2, j_2))$
  • $1 \leq N \leq 10$
  • $1 \leq b_i \leq 100$
  • $b_i \neq b_j (i \neq j)$

Input

Input is given from Standard Input in the following format:

A1,1A_{1, 1} A1,2A_{1, 2} A1,3A_{1, 3}

A2,1A_{2, 1} A2,2A_{2, 2} A2,3A_{2, 3}

A3,1A_{3, 1} A3,2A_{3, 2} A3,3A_{3, 3}

NN

b1b_1

\vdots

bNb_N

Output

If we will have a bingo, print Yes; otherwise, print No.


84 97 66
79 89 11
61 59 7
7
89
7
87
79
24
84
30
Yes

We will mark $A_{1, 1}, A_{2, 1}, A_{2, 2}, A_{3, 3}$, and complete the diagonal from the top-left to the bottom-right.


41 7 46
26 89 2
78 92 8
5
6
45
16
57
17
No

We will mark nothing.


60 88 34
92 41 43
65 73 48
10
60
43
88
11
48
73
65
41
92
34
Yes

We will mark all the squares.