#AT1496. D - Handstand 2
D - Handstand 2
D - Handstand 2
Score : $400$ points
Problem Statement
Given is a positive integer $N$.
Find the number of pairs $(A, B)$ of positive integers not greater than $N$ that satisfy the following condition:
- When $A$ and $B$ are written in base ten without leading zeros, the last digit of $A$ is equal to the first digit of $B$, and the first digit of $A$ is equal to the last digit of $B$.
Constraints
- $1 \leq N \leq 2 \times 10^5$
- All values in input are integers.
Input
Input is given from Standard Input in the following format:
Output
Print the answer.
25
17
The following $17$ pairs satisfy the condition: $(1,1)$, $(1,11)$, $(2,2)$, $(2,22)$, $(3,3)$, $(4,4)$, $(5,5)$, $(6,6)$, $(7,7)$, $(8,8)$, $(9,9)$, $(11,1)$, $(11,11)$, $(12,21)$, $(21,12)$, $(22,2)$, and $(22,22)$.
1
1
100
108
2020
40812
200000
400000008
相关
在下列比赛中: