#D. C - GCD on Blackboard

    传统题 1000ms 256MiB

C - GCD on Blackboard

该比赛已结束,您无法在比赛模式下递交该题目。您可以点击“在题库中打开”以普通模式查看和递交本题。

C - GCD on Blackboard

Score : $300$ points

Problem Statement

There are $N$ integers, $A_1, A_2, ..., A_N$, written on the blackboard.

You will choose one of them and replace it with an integer of your choice between $1$ and $10^9$ (inclusive), possibly the same as the integer originally written.

Find the maximum possible greatest common divisor of the $N$ integers on the blackboard after your move.

Constraints

  • All values in input are integers.
  • $2 \leq N \leq 10^5$
  • $1 \leq A_i \leq 10^9$

Output

Input is given from Standard Input in the following format:

NN

A1A_1 A2A_2 ...... ANA_N

Output

Print the maximum possible greatest common divisor of the $N$ integers on the blackboard after your move.


3
7 6 8
2

If we replace $7$ with $4$, the greatest common divisor of the three integers on the blackboard will be $2$, which is the maximum possible value.


3
12 15 18
6

2
1000000000 1000000000
1000000000

We can replace an integer with itself.

2024寒假入门组刷题营(九)

未参加
状态
已结束
规则
ACM/ICPC
题目
8
开始于
2024-2-6 13:30
结束于
2024-2-6 15:30
持续时间
2 小时
主持人
参赛人数
10