#AT1304. D - XXOR

D - XXOR

D - XXOR

Score : $400$ points

Problem Statement

You are given $N$ non-negative integers $A_1, A_2, ..., A_N$ and another non-negative integer $K$.

For a integer $X$ between $0$ and $K$ (inclusive), let $f(X) = (X$ XOR $A_1)$ $+$ $(X$ XOR $A_2)$ $+$ $...$ $+$ $(X$ XOR $A_N)$.

Here, for non-negative integers $a$ and $b$, $a$ XOR $b$ denotes the bitwise exclusive OR of $a$ and $b$.

Find the maximum value of $f$.

What is XOR?

The bitwise exclusive OR of $a$ and $b$, $X$, is defined as follows:

  • When $X$ is written in base two, the digit in the $2^k$'s place ($k \geq 0$) is $1$ if, when written in base two, exactly one of $A$ and $B$ has $1$ in the $2^k$'s place, and $0$ otherwise.

For example, $3$ XOR $5 = 6$. (When written in base two: $011$ XOR $101 = 110$.)

</details>

Constraints

  • All values in input are integers.
  • $1 \leq N \leq 10^5$
  • $0 \leq K \leq 10^{12}$
  • $0 \leq A_i \leq 10^{12}$

Input

Input is given from Standard Input in the following format:

NN KK

A1A_1 A2A_2 ...... ANA_N

Output

Print the maximum value of $f$.


3 7
1 6 3
14

The maximum value is: $f(4) = (4$ XOR $1) + (4$ XOR $6) + (4$ XOR $3) = 5 + 2 + 7 = 14$.


4 9
7 4 0 3
46

1 0
1000000000000
1000000000000