#AT1247. C - Modulo Summation
C - Modulo Summation
C - Modulo Summation
Score : $300$ points
Problem Statement
You are given $N$ positive integers $a_1, a_2, ..., a_N$.
For a non-negative integer $m$, let $f(m) = (m\ mod\ a_1) + (m\ mod\ a_2) + ... + (m\ mod\ a_N)$.
Here, $X\ mod\ Y$ denotes the remainder of the division of $X$ by $Y$.
Find the maximum value of $f$.
Constraints
- All values in input are integers.
- $2 \leq N \leq 3000$
- $2 \leq a_i \leq 10^5$
Input
Input is given from Standard Input in the following format:
Output
Print the maximum value of $f$.
3
3 4 6
10
$f(11) = (11\ mod\ 3) + (11\ mod\ 4) + (11\ mod\ 6) = 10$ is the maximum value of $f$.
5
7 46 11 20 11
90
7
994 518 941 851 647 2 581
4527
관련
다음 대회들에서: